Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 250: 121010, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142507

RESUMEN

Cylindrospermopsin (CYN) can induce phytoplankton community to secrete alkaline phosphatase (ALP), which is one of the important strategies for the bloom-forming cyanobacterium Raphidiopsis to thrive in extremely low-phosphorus (P) waters. However, how bacterioplankton community, another major contributor to ALPs in waters, couples to Raphidiopsis through CYN, and the role of this coupling in supporting the dominance of Raphidiopsis in nature remain largely unknown. Here, we conducted microcosm experiments to address this knowledge gap, using a combination of differential filtration-based and metagenomics-based methods to identify the sources of ALPs. We found that, compared with algal-derived ALPs, bacteria-derived ALPs exhibited a more pronounced and sensitive response to CYN. This response to CYN was enhanced under low-P conditions. Interestingly, we found that Verrucomicrobia made the largest contribution to the total abundance of pho genes, which encode ALPs. Having high gene abundance of the CYN-sensing PI3K-AKT signaling pathway, Verrucomicrobia's proportion increased with higher concentrations of CYN under low-P conditions, thereby explaining the observed increase in pho gene abundance. Compared with other cyanobacterial genera, Raphidiopsis had a higher abundance of the pst gene. This suggests that Raphidiopsis exhibited a greater capacity to uptake the inorganic P generated by ALPs secreted by other organisms. Overall, our results reveal the mechanism of CYN-induced ALP secretion and its impact on planktonic P-cycling, and provide valuable insights into the role of CYN in supporting the formation of Raphidiopsis blooms.


Asunto(s)
Alcaloides , Cianobacterias , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Cianobacterias/metabolismo , Toxinas de Cianobacterias , Fósforo/metabolismo , Uracilo
2.
Bioresour Technol ; 390: 129899, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865151

RESUMEN

An instantaneous and reversible flocculation method for Scenedesmus harvesting was developed, based on the complexation of Chitosan (CTS) and Xanthan Gum (XG). Under rapid stirring, Scenedesmus cells formed centimeter-sized flocs within 20 s using binary flocculants of 4 mg/L CTS and 16 mg/L XG. These flocs exhibited a remarkable harvest efficiency exceeding 95 % when filtered through 500-µm-pore-sized sieves. Furthermore, the flocs could be completely disintegrated by using alkaline or NaCl solutions (pH > 11 or NaCl concentration > 1.5 mol/L). Adjusting pH allowed recovery of 50 % CTS and 75 % XG, resulting in microalgae biomass with lower flocculant content and reducing reagent costs. Electrostatic interaction of -COO- of XG and -NH3+ of CTS deduced the formation of polyelectrolyte complexes (PECs), which shrink and wrap the coexisting algal cells to form the flocs under stirring. CTS and XG complexation was instantaneous and reversible, explaining quick flocculation and disintegration.


Asunto(s)
Quitosano , Microalgas , Scenedesmus , Quitosano/química , Floculación , Cloruro de Sodio , Microalgas/química , Biomasa
3.
Environ Res ; 234: 116591, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423367

RESUMEN

Denitrification is critical for removing nitrate from wastewater, but it typically requires large amounts of organic carbon, which can lead to high operating costs and secondary environmental pollution. To address this issue, this study proposes a novel method to reduce the demand for organic carbon in denitrification. In this study, a new denitrifier, Pseudomonas hunanensis strain PAD-1, was obtained with properties for high efficiency nitrogen removal and trace N2O emission. It was also used to explore the feasibility of pyrite-enhanced denitrification to reduce organic carbon demand. The results showed that pyrite significantly improved the heterotrophic denitrification of strain PAD-1, and optimal addition amount was 0.8-1.6 g/L. The strengthening effect of pyrite was positively correlated with carbon to nitrogen ratio, and it could effectively reduce demand for organic carbon sources and enhance carbon metabolism of strain PAD-1. Meanwhile, the pyrite significantly up-regulated electron transport system activity (ETSA) of strain PAD-1 by 80%, nitrate reductase activity by 16%, Complex III activity by 28%, and napA expression by 5.21 times. Overall, the addition of pyrite presents a new avenue for reducing carbon source demand and improving the nitrate harmless rate in the nitrogen removal process.


Asunto(s)
Desnitrificación , Nitratos , Aerobiosis , Nitrógeno/metabolismo , Carbono , Reactores Biológicos
4.
Microorganisms ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835404

RESUMEN

Microcystis is one of the most common bloom-forming cyanobacteria in freshwater ecosystems throughout the world. However, the underlying life history mechanism and distinct temporal dynamics (inter- and intra-annual) of Microcystis populations in different geographical locations and lakes remain unclear but is critical information needed for the development of robust prediction, prevention, and management strategies. Perennial observations indicate that temperature may be the key factor driving differences in the overwintering strategy. This study quantitatively compared the overwintering abilities of Microcystis aeruginosa (Ma) in both the water column and sediments under a gradient of overwintering water temperatures (i.e., 4, 8, and 12 °C) using the death and proliferation rates of Ma. The results show that the dynamics of the Microcystis overwintering strategy were significantly affected by water temperatures. At 4 and 8 °C, Ma mainly overwintered in sediments and disappeared from the water column after exposure to low temperatures for a long duration, although some Microcystis cells can overwinter in the water column for short durations at low temperatures. At 12 °C, most Ma can overwinter in the water column. Rising temperatures promoted the proliferation of pelagic Ma but accelerated the death of benthic Ma. With warmer winter temperatures, pelagic Microcystis might become the primary inoculum sources in the spring. Our study highlights the overwintering strategy flexibility in explaining temporal dynamics differences of Microcystis among in geographical locations and should be considered in the context of global warming.

5.
Environ Sci Pollut Res Int ; 28(31): 42082-42092, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33792846

RESUMEN

A mechanical harvesting technology based on coupling flocculation with a rotary drum filter (RDF, 35-µm) was applied to remove cyanobacterial blooms and produce clean water in Lake Caohai, a sub-lake of Lake Dianchi (Kunming, China). After treatment with a shipboard RDF and cationic polyacrylamide (CPAM, 0.5-2 mg/L) flocculation, > 95% of cyanobacterial biomass was removed. The chlorophyll-a (Chl-a) concentration and turbidity in the effluent were < 8 µg/L and < 3 NTU, respectively. Nutrient concentrations were also markedly reduced, with a permanganate index (PI) of < 2 mg/L and total phosphorus concentration of < 20 µg/L. The total nitrogen concentration was reduced from 2.75 to 1.65 mg/L, and most of the residual nitrogen was nitrate. Although powerful for the removal of suspended particles and an enhanced water transparency, the combined technology showed no significant reduction in inorganic nutrients and only a slight reduction in dissolved organic matter (DOM). The concentrations of protein and polysaccharide were significantly reduced, while that of humic matter did not change during the process. After flushing with the effluent of the RDF, a 20,000-m3 enclosure of lake water became clear when the volume of the effluent was 1.8 times that of the water enclosure. The electrical energy per order (EE/O) was calculated to be 0.053kWh/m3, which is lower than that of transferring water from more than 10 km away (0.058 kWh/m3). Thus, a shipboard RDF coupled with CPAM flocculation is a promising approach to remove harmful cyanobacterial blooms and improve the water environment of eutrophic lakes.


Asunto(s)
Cianobacterias , Eutrofización , China , Floculación , Lagos , Fósforo/análisis , Agua
6.
J Exp Zool B Mol Dev Evol ; 332(3-4): 69-80, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30964604

RESUMEN

The Chinese concave-eared torrent frog (Odorrana tormota) is typically sexually dimorphic. Females are significantly less common than males in the wild. Until now, the molecular mechanisms of reproduction and sex differentiation of frogs remain unclear. Here, we integrated mRNA and microRNA (miRNA) expression profiles to reveal the molecular mechanisms of reproduction and sex differentiation in O. tormota. We identified 234 differentially expressed miRNAs (DEMs) and 18,551 differentially expressed transcripts. Of these, 12,053 mRNAs and 64 miRNAs were upregulated in testes, and 6,498 mRNAs and 170 miRNAs were upregulated in ovaries. Integrated analysis of the miRNA and mRNA expression profiles predicted 75,602 potential miRNA-mRNA interaction sites, with 42,065 negative miRNA-mRNA interactions. We found 36 differentially expressed genes (DEGs) related to reproduction and sex differentiation, of which 15 DEGs formed 92 negative miRNA-mRNA interactions with 34 known DEMs. Thus, miRNAs may play other important roles in O. tormota. Furthermore, Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed reproductive-related processes, such as the gonadotropinreleasing hormone signaling pathway and ovarian steroidogenesis. Based on functional annotation and the literature, the retinoic acid signaling pathway, the SOX9-AMH pathway, and the process of spermatogenesis may be involved in the molecular mechanisms of reproduction and sex differentiation in O. tormota, and may be regulated by miRNAs. The miRNA-mRNA pairs described may provide further understanding of the regulatory mechanisms associated with reproduction and sex differentiation, and the molecular mechanism of reproduction in O. tormota.


Asunto(s)
MicroARNs/metabolismo , ARN Mensajero/metabolismo , Ranidae/metabolismo , Transcriptoma , Animales , Encéfalo/metabolismo , Femenino , Regulación de la Expresión Génica , Masculino , MicroARNs/genética , Músculo Esquelético/metabolismo , Ovario/metabolismo , ARN Mensajero/genética , Caracteres Sexuales , Piel/metabolismo , Testículo/metabolismo
7.
J Nanosci Nanotechnol ; 10(8): 5495-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21125926

RESUMEN

We examine two techniques to determine experimentally and theoretically the strength of quantum confinement in SiGe nano-dots. A simple theory for admittance spectroscopy in a quantum dot is developed in conjunction with our experiments and experimental findings. Using a mass-balance equation approach based on the Boltzmann equation in which the hole-phonon interaction in a SiGe nano-dot is considered, we can successfully reproduce those observed experimentally in the admittance spectroscopy measurements. Thus, we are able to understand the interesting features of the electronic properties in SiGe nano-dots, especially the dependence of the quantum confinement on the size of the dots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...